Thrill
0.1
|
simple implementation of a gradient computation class using a least squares cost function and a linear model (y = w*x)
Definition at line 86 of file stochastic_gradient_descent.hpp.
#include <stochastic_gradient_descent.hpp>
Static Public Member Functions | |
static GradientResult< Vector > | Compute (const Vector &data, double label, const Vector &weights) |
|
inlinestatic |
Definition at line 89 of file stochastic_gradient_descent.hpp.
References DataPoint< Vector >::data, Vector< D, Type >::dot(), examples::logistic_regression::gradient(), and DataPoint< Vector >::label.
Referenced by StochasticGradientDescent< Vector >::optimize().