Thrill  0.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
sha512.cpp
Go to the documentation of this file.
1 /*******************************************************************************
2  * tlx/digest/sha512.cpp
3  *
4  * Public domain implementation of SHA-512 (SHA-2) processor. Copied from
5  * https://github.com/kalven/sha-2, which is based on LibTomCrypt.
6  *
7  * Part of tlx - http://panthema.net/tlx
8  *
9  * Copyright (C) 2018 Timo Bingmann <[email protected]>
10  *
11  * All rights reserved. Published under the Boost Software License, Version 1.0
12  ******************************************************************************/
13 
14 #include <tlx/digest/sha512.hpp>
15 
16 #include <tlx/math/ror.hpp>
17 #include <tlx/string/hexdump.hpp>
18 
19 #include <algorithm>
20 
21 namespace tlx {
22 
23 /*
24  * LibTomCrypt, modular cryptographic library -- Tom St Denis
25  *
26  * LibTomCrypt is a library that provides various cryptographic algorithms in a
27  * highly modular and flexible manner.
28  *
29  * The library is free for all purposes without any express guarantee it works.
30  */
31 
32 typedef uint32_t u32;
33 typedef uint64_t u64;
34 
35 namespace {
36 
37 static const u64 K[80] = {
38  0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
39  0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
40  0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
41  0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
42  0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
43  0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
44  0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
45  0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
46  0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
47  0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
48  0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
49  0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
50  0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
51  0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
52  0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
53  0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
54  0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
55  0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
56  0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
57  0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
58  0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
59  0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
60  0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
61  0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
62  0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
63  0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
64  0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
65 };
66 
67 static inline u32 min(u32 x, u32 y) {
68  return x < y ? x : y;
69 }
70 
71 static inline void store64(u64 x, unsigned char* y) {
72  for (int i = 0; i != 8; ++i)
73  y[i] = (x >> ((7 - i) * 8)) & 255;
74 }
75 static inline u64 load64(const unsigned char* y) {
76  u64 res = 0;
77  for (int i = 0; i != 8; ++i)
78  res |= u64(y[i]) << ((7 - i) * 8);
79  return res;
80 }
81 
82 static inline u64 Ch(const u64& x, const u64& y, const u64& z) {
83  return z ^ (x & (y ^ z));
84 }
85 static inline u64 Maj(const u64& x, const u64& y, const u64& z) {
86  return ((x | y) & z) | (x & y);
87 }
88 static inline u64 Sh(u64 x, u64 n) {
89  return x >> n;
90 }
91 static inline u64 Sigma0(u64 x) {
92  return ror64(x, 28) ^ ror64(x, 34) ^ ror64(x, 39);
93 }
94 static inline u64 Sigma1(u64 x) {
95  return ror64(x, 14) ^ ror64(x, 18) ^ ror64(x, 41);
96 }
97 static inline u64 Gamma0(u64 x) {
98  return ror64(x, 1) ^ ror64(x, 8) ^ Sh(x, 7);
99 }
100 static inline u64 Gamma1(u64 x) {
101  return ror64(x, 19) ^ ror64(x, 61) ^ Sh(x, 6);
102 }
103 
104 static void sha512_compress(uint64_t state[8], const uint8_t* buf) {
105  u64 S[8], W[80], t0, t1;
106 
107  // Copy state_ into S
108  for (int i = 0; i < 8; i++)
109  S[i] = state[i];
110 
111  // Copy the state into 1024-bits into W[0..15]
112  for (int i = 0; i < 16; i++)
113  W[i] = load64(buf + (8 * i));
114 
115  // Fill W[16..79]
116  for (int i = 16; i < 80; i++)
117  W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
118 
119  // Compress
120  auto RND =
121  [&](u64 a, u64 b, u64 c, u64& d, u64 e, u64 f, u64 g, u64& h, u64 i)
122  {
123  t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];
124  t1 = Sigma0(a) + Maj(a, b, c);
125  d += t0;
126  h = t0 + t1;
127  };
128 
129  for (int i = 0; i < 80; i += 8)
130  {
131  RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i + 0);
132  RND(S[7], S[0], S[1], S[2], S[3], S[4], S[5], S[6], i + 1);
133  RND(S[6], S[7], S[0], S[1], S[2], S[3], S[4], S[5], i + 2);
134  RND(S[5], S[6], S[7], S[0], S[1], S[2], S[3], S[4], i + 3);
135  RND(S[4], S[5], S[6], S[7], S[0], S[1], S[2], S[3], i + 4);
136  RND(S[3], S[4], S[5], S[6], S[7], S[0], S[1], S[2], i + 5);
137  RND(S[2], S[3], S[4], S[5], S[6], S[7], S[0], S[1], i + 6);
138  RND(S[1], S[2], S[3], S[4], S[5], S[6], S[7], S[0], i + 7);
139  }
140 
141  // Feedback
142  for (int i = 0; i < 8; i++)
143  state[i] = state[i] + S[i];
144 }
145 
146 } // namespace
147 
149  curlen_ = 0;
150  length_ = 0;
151  state_[0] = 0x6a09e667f3bcc908ULL;
152  state_[1] = 0xbb67ae8584caa73bULL;
153  state_[2] = 0x3c6ef372fe94f82bULL;
154  state_[3] = 0xa54ff53a5f1d36f1ULL;
155  state_[4] = 0x510e527fade682d1ULL;
156  state_[5] = 0x9b05688c2b3e6c1fULL;
157  state_[6] = 0x1f83d9abfb41bd6bULL;
158  state_[7] = 0x5be0cd19137e2179ULL;
159 }
160 
161 SHA512::SHA512(const void* data, uint32_t size)
162  : SHA512() {
163  process(data, size);
164 }
165 
167  : SHA512() {
168  process(str);
169 }
170 
171 void SHA512::process(const void* data, u32 size) {
172  const u32 block_size = sizeof(SHA512::buf_);
173  auto in = static_cast<const uint8_t*>(data);
174 
175  while (size > 0)
176  {
177  if (curlen_ == 0 && size >= block_size)
178  {
179  sha512_compress(state_, in);
180  length_ += block_size * 8;
181  in += block_size;
182  size -= block_size;
183  }
184  else
185  {
186  u32 n = min(size, (block_size - curlen_));
187  std::copy(in, in + n, buf_ + curlen_);
188  curlen_ += n;
189  in += n;
190  size -= n;
191 
192  if (curlen_ == block_size)
193  {
194  sha512_compress(state_, buf_);
195  length_ += 8 * block_size;
196  curlen_ = 0;
197  }
198  }
199  }
200 }
201 
202 void SHA512::process(const std::string& str) {
203  return process(str.data(), str.size());
204 }
205 
206 void SHA512::finalize(void* digest) {
207  // Increase the length of the message
208  length_ += curlen_ * 8ULL;
209 
210  // Append the '1' bit
211  buf_[curlen_++] = static_cast<uint8_t>(0x80);
212 
213  // If the length is currently above 112 bytes we append zeros then compress.
214  // Then we can fall back to padding zeros and length encoding like normal.
215  if (curlen_ > 112)
216  {
217  while (curlen_ < 128)
218  buf_[curlen_++] = 0;
219  sha512_compress(state_, buf_);
220  curlen_ = 0;
221  }
222 
223  // Pad up to 120 bytes of zeroes
224  // note: that from 112 to 120 is the 64 MSB of the length. We assume that
225  // you won't hash 2^64 bits of data... :-)
226  while (curlen_ < 120)
227  buf_[curlen_++] = 0;
228 
229  // Store length
230  store64(length_, buf_ + 120);
231  sha512_compress(state_, buf_);
232 
233  // Copy output
234  for (int i = 0; i < 8; i++)
235  store64(state_[i], static_cast<uint8_t*>(digest) + (8 * i));
236 }
237 
239  std::string out(kDigestLength, '0');
240  finalize(const_cast<char*>(out.data()));
241  return out;
242 }
243 
245  uint8_t digest[kDigestLength];
246  finalize(digest);
247  return hexdump_lc(digest, kDigestLength);
248 }
249 
251  uint8_t digest[kDigestLength];
252  finalize(digest);
253  return hexdump(digest, kDigestLength);
254 }
255 
256 std::string SHA512_hex(const void* data, uint32_t size) {
257  return SHA512(data, size).digest_hex();
258 }
259 
261  return SHA512(str).digest_hex();
262 }
263 
264 std::string SHA512_hex_uc(const void* data, uint32_t size) {
265  return SHA512(data, size).digest_hex_uc();
266 }
267 
269  return SHA512(str).digest_hex_uc();
270 }
271 
272 } // namespace tlx
273 
274 /******************************************************************************/
void finalize(void *digest)
finalize computation and output 64 byte (512 bit) digest
Definition: sha512.cpp:206
uint8_t buf_[128]
Definition: sha512.hpp:60
std::string digest()
finalize computation and return 64 byte (512 bit) digest
Definition: sha512.cpp:238
std::string digest_hex()
finalize computation and return 64 byte (512 bit) digest hex encoded
Definition: sha512.cpp:244
std::string digest_hex_uc()
finalize computation and return 64 byte (512 bit) digest upper-case hex
Definition: sha512.cpp:250
uint64_t state_[8]
Definition: sha512.hpp:58
std::string SHA512_hex_uc(const void *data, uint32_t size)
process data and return 64 byte (512 bit) digest upper-case hex encoded
Definition: sha512.cpp:264
uint64_t length_
Definition: sha512.hpp:57
SHA512()
construct empty object.
Definition: sha512.cpp:148
uint64_t u64
Definition: md5.cpp:33
std::string hexdump_lc(const void *const data, size_t size)
Dump a (binary) string as a sequence of lowercase hexadecimal pairs.
Definition: hexdump.cpp:95
void process(const void *data, uint32_t size)
process more data
Definition: sha512.cpp:171
SHA-512 processor without external dependencies.
Definition: sha512.hpp:28
list x
Definition: gen_data.py:39
static constexpr size_t kDigestLength
digest length in bytes
Definition: sha512.hpp:44
std::basic_string< char, std::char_traits< char >, Allocator< char > > string
string with Manager tracking
Definition: allocator.hpp:220
std::string SHA512_hex(const void *data, uint32_t size)
process data and return 64 byte (512 bit) digest hex encoded
Definition: sha512.cpp:256
uint32_t curlen_
Definition: sha512.hpp:59
static uint_pair min()
return an uint_pair instance containing the smallest value possible
Definition: uint_types.hpp:217
uint32_t u32
Definition: md5.cpp:32
std::string hexdump(const void *const data, size_t size)
Dump a (binary) string as a sequence of uppercase hexadecimal pairs.
Definition: hexdump.cpp:21
static uint64_t ror64(const uint64_t &x, int i)
ror64 - generic
Definition: ror.hpp:89